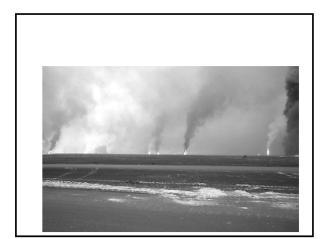
Presentation 7 – David Cowan


Did Exposure to Oil Well Fire Smoke
During the Gulf War Increase the Risk of
Asthma among Veterans? A Review of
Three Studies

David N. Cowan, PhD, MPH

Division of Preventive Medicine Walter Reed Army Institute of Research Silver Spring, MD

EPICON Associates, LLC Silver Spring, MD

Formerly with DOD Deployment Health Clinical Center Walter Reed Army Medical Center Washington, DC

Two 2002 Studies of Asthma and Exposure to Oil Well Fire Smoke

- Smith TC, Heller JM, Hooper TI, Gackstetter GD, Gray GC. Are Gulf War veterans experiencing illness due to exposure to smoke from Kuwait oil well fires? Examination of Department of Defense hospitalization data. Am J Epidemiol 2002 May 15;155(10):908-17
- Lange JL, Schwartz DA, Doebbeling BN, Heller JM, Thorne PS. Exposures to the Kuwait oil fires and their association with asthma and bronchitis among gulf war veterans. Environ Health Perspect 2002 Nov;110(11):1141-6

۰

A case control study of asthma among U.S. Army Gulf War veterans and modeled exposure to oil well fire smoke

David N. Cowan, Jeffrey L. Lange, Jack Heller, Jeff Kirkpatrick, Samar DeBakey Mil Med 2002 Sep;167(9):777-82

Methods 1

- Subjects:
 - Active Duty Army
 - Comprehensive Clinical Evaluation Program Participants
 - Demographic, military, and questionnaire (including self-reported Sx, Cx, Ex) data available.
 - Physician-assigned diagnoses (primary, up to 6 secondary) ICD-9 coding

Methods 2

- Cases
 - Diagnosis of asthma (493, 493.91) after CCEP exam
 - No diagnostic or laboratory data available
- Controls 3:1 ratio
 - Random selection of CCEP participants with no respiratory system diagnoses, SSID diagnoses, or Sx or Cx

Methods 3

- Exposure
 - Self-reported exposure captured (yes/no)
 - Unit location at company level
 - Unit location provided by CRUR to CHPPM

10

Methods 4

- Exposure
 - NOAA Air Resource Laboratory developed plume model
 - Modeled plume is for 24 hr average concentration of soot, updated daily
 - Exposures are estimated for 15 km resolution,
 2 m above ground

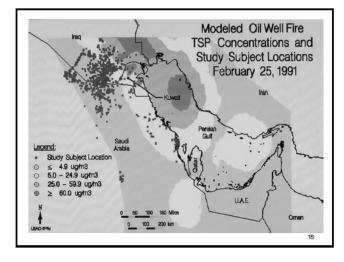
Methods 5

- Exposure
 - Soot composed ~15-20% of total plume particulates, varied considerably over time and across wells
 - Other components include salts (~30%), sulfates (~8%), other organic compounds (~30%)
 - Most soot and other particulates 0.1-0.8 um diameter

1:

Methods 6

• Exposure measures


- Sum of estimated concentration for all days in-theater (mg/m²-days). Continuous variable and categories:

 • referent < 0.1 mg/m²-days

 • intermediate >= 0.1 and < 1.0 mg/m²-days

 • highest level >= 1.0 mg/m²-days
- Number of days exposed to levels of 65 μg/m² or higher (National Ambient Air Quality Standard for 24-hour particulate matter of less than 2.5 μm diameter (EPA 1997)). Continuous variable and categories:
 - referent 0 Days
 - intermediate 1 to 5 days
 - highest 6 to 30 days

DATA FLOW AND INTEGRATION DATA Element Source CRUR Integration GIS/CHPPM Asthma/Smoke Exposure Association Output

Methods 7

- Analysis
 - Odds ratio measure of association
 - Statistical significance based on 95% confidence interval
 - Logistic regression used for multivariate analyses

Results

- 873 cases with valid location data used in analyses
- 2464 controls with valid location data used in analyses

Table 1. Univariate associations between asthma and demographic characteristics

Sex			
Female	133	264	1.00 (referent)
Male	739	2200	0.67 (0.53 - 0.84)
Age group at time of evaluation			
19-24	262	662	1.00 (referent)
25-29	231	646	0.90 (0.73 - 1.12)
30-34	202	608	0.84 (0.67 - 1.05)
30-34	202		
30-34 GE 36	161	520	0.78 (0.62 - 0.99)
	161		
GE 36	161		
GE 35 Chi Square for trend = 5,10, p=0	161		
GE 36 Chi Square for trend = 5,10, p=0 Race/ethnicity	161 024	620	0.78 (0.62 – 0.99)
GE 36 Chi Square for trend = 5, 10, p=0 Race/ethnicity White	161 024 439	520 1225	0.78 (0.62 - 0.99)

18

Table 1. (cont) Univariate associations between asthma and demographic characteristics

	Number of	Number of	
Variable and Level	Cases	Controls	Odds Ratio (95% CI)
Rank			
Enlisted	799	2169	1.00 (referent)
Officer	66	246	0.73 (0.54 - 0.98)
Cigarette smoking			
Never	499	1327	1.00 (referent)
Former	186	461	1.07 (0.87-1.32)
Current	188	676	0.74 (0.61 - 0.90)
Self-reported oil well fi	ire smoke expos	sure	
No	111	443	1.00 (referent)
Yes	634	1626	1.56 (1.23 - 1.97)

Comparison of exposures

- Poor agreement between self-reported and modeled exposures (kappas of 0.13 and 0.12)
- High correlation between modeled cumulative exposure and days exposed to high $(r_s=0.84)$

Table 2. Univariate Associations between Asthma and Measures of Smoke Exposure

Categories	Cases	Controls	Odds Ratio (95% CI)
< 0.1	172	592	1.00 (referent)
>= 0.1 -< 1.0	292	829	1.21 (0.97 – 1.51)
>= 1.0	273	670	1.40 (1.12 – 1.76)
Any vs. none			1.30 (1.06 – 1.58)

Table 2. (Cont) Univariate Associations between Asthma and Measures of Smoke Exposure

Categories	Cases	Controls	Odds Ratio (95% CI)
0	215	723	1.00 (referent)
1-5	270	745	1.22 (0.99 - 1.50)
6-30	218	495	1.48 (1.19 - 1.85)
Any vs. none			1.32 (1.10 - 1.60)

22

Table 3. Odds Ratios (95% CI) for Asthma by Smoking Status

Exposure and Lew	9		
Cumulative exposu	re mg/m3-days		
Categories	Never Smaked	Former Smoker	Current Smoker
<0.1	1.00 (referent)	1.00 (referent)	1.00 (referent)
>=0.1-<1.0	1.31 (0.98 – 1.77)	1.27 (0.75 – 2.16)	1.00 (0.71 – 2.16)
>= 1.0	1.43 (1.06 – 1.94)	1.73 (1.04 - 2.90)	1.05 (0.64 – 1.72)

Table 3. (Cont) Odds Ratios (95% CI) for Asthma by Smoking Status

Exposure and Level Days with Exposure >= 65 ug/m3			
0	1.00 (referent)	1.00 (referent)	1.00 (referent)
1-5	1.24 (0.99 - 1.64)	1.54 (0.95 – 2.51)	0.92 (0.63 - 1.34)
6-30	1.35 (1.00 – 1.82)	2.02 (1.23 – 3.34)	1.29 (0.79 – 2.09)

Table 4. Adjusted* Odds Ratios for Associations with Measures of Smoke Exposure

Cumulative exposi	ure mg/m3-days
Categories	Adjusted Odds Ratio (95% CI)
< 0.1	1.00 (referent)
>= 0.1 - < 1.0	1.24 (1.00 – 1.55)
>= 1.0	1.40 (1.11 – 1.75)
Continuous	1.08 (1.01 – 1.15)

*Adjusted for sex, age, race/ethnicity, rank, smoking history, and self-reported exposure.

25

Table 4. (Cont) Adjusted* Odds Ratios for Associations with Measures of Smoke Exposure

Days with Expos Categories	ure >= 65 ug/m3 Adjusted Odds Ratio (95% CI)
0	1.00 (referent)
1-5	1.22 (0.99 – 1.51)
6-30	1.41 (1.12 – 1.77)
Continuous	1.03 (1.01 – 1.05)
*Adjusted for sex	k, age, race/ethnicity, rank, smoking history, and osure.

١...

Discussion

- We found significant associations between modeled smoke exposure and physiciandiagnosed asthma for both cumulative exposure measures defined a priori
- We found dose-responses for both when considered as categorical measures and as continuous measures

What did they find?

- Smith, et al. No association between modeled smoke exposure (MSE) and hospitalization for asthma (and other diseases)
- Lange, et al. No association between MSE and self-reported asthma symptoms

Compare and Contrast the Studies

- What do they have in common?
- What is different?
- How could these affect the findings?

29

Study design

- Smith, et al. Historical cohort
- Lange, et al. Cross-sectional
- Cowan, et al. Case-control

30

Study population

- Smith, et al. ~405,000 active duty, deployed, all branches
- Lange, et al. ~1,900 all components, deployed, all branches
- Cowan, et al. ∼3,300 active duty CCEP, deployed, Army only

Control of potential confounders?

- Smith, et al. Partial: job, prewar hospitalization
- Lange, et al. Partial: smoking status, selfreported exposure
- Cowan, et al. Partial: smoking status, selfreported exposure

Diagnosis issues

- A priori hypothesis
- Case definition
- Study setting
- Number of cases in study
- Diagnostic accuracy
- Prevalence of disease in studied population

A priori hypothesis for outcome?

- Smith, et al. No. Looked at all dx
- Lange, et al. Yes. Examined only respiratory illness (plus depression)
- Cowan, et al. Yes. Examined only asthma

34

Case Definition

- Smith, et al. Hospital record, ICD-9
- Lange, et al. Self-report ATSQ
- Cowan, et al. Physician diagnosis

Study setting

- Smith, et al. Electronic records of hospitalized patients only
- Lange, et al. Telephone interviews
- Cowan, et al. Patients seen outpatient in CCEP. Data from q-aires, medical exam

Number of cases in study

- Smith, et al., 880
- Lange, et al., 129
- Cowan, et al., 865

37

Diagnostic specificity and sensitivity

- Smith, et al., used only hospitalized cases, likely missed 90% of all cases (high PPV, not sensitive)
- Lange, et al., used self-report, likely included many non-cases (low PPV, not specific)
- Classification error for both
- Cowan, et al., used physician dx, sensitivity and specificity unknown.

20

Prevalence of Diagnosis in Population

- Smith, et al. 0.22%
- Lange, et al. 8.3%
- Cowan, et al. 2.2% (primary dx)

Exposure Issues

- Estimation issues
- Data source
- A priori hypothesis
- Exposure Cut points
- Branch of service and unit location

How exposure estimated

- Smith, et al. Reported TSP, 2 m above ground
- Lange, et al. Solar absorbance of smoke, distance above ground not specified
- Cowan, et al. Soot, 2 m above ground

41

Source of exposure estimates

 All studies used same basic source of data: Center for Health Promotion and Preventive Medicine/National Oceanic and Atmospheric Administration plume model

42

A priori hypothesis for exposure?

- Smith, et al. Not clear
- Lange, et al. No. Cut points arbitrary
- Cowan, et al. Yes. Set cut points prior to analyses

Exposure Cut points

- Smith, et al.
 - 7 levels
 - none
 - 1-260 ug/m3 for 1-25, 25-50, or >50 days
 - >260 ug/m3 for 1-25, 25-50, or >50 days
 - Categories do not appear to be mutually exclusive

Exposure Cut points

- Lange, et al.
 - Two levels "set without available precedent and without intuition regarding a level that would adequately balance sensitivity and specificity. Thus, a priori..." selected the 50th percentile and the 95th percentile, compared most-exposed to rest of population
 - Used number of days exposure was above each threshold.

Exposure Cut points

 Cowan, et al., established cut points a priori based on distribution and EPA standards

46

Branches included

- Smith, et al. All branches
- Lange, et al. All branches
- Cowan, et al. Army only

Military Branches and Unit Location Data

- Most military personnel in the vicinity of the oil well fires were Army and Marine Corps
- Army unit location data at the company level (approximately 100-200/Co)
- Marine data at the battalion level (4 to 6 Co/Bn)
- Navy and Air Force data not usable due to mobility and size of units
- Only Army personnel were used by Cowan, et al.

48

47

Impact of Branch of Service

- Smith, et al. and Lange, et al. used all branches of service. Due to problems with Marines, Air Force, and Navy data there is likely increased exposure error
- Cowan, et al., used only Army units, likely had lower level of exposure estimate error

What does it all mean: error in diagnosis and exposure

- If errors in diagnosis and exposure are not dependent on one another (non-differential misclassification), then the observed level of association is almost certainly lower than the true level of association
- There is little doubt that errors exist in both diagnosis and exposure estimates

50

Misclassification Discussion: Cowan, et al.

- Potential for misclassification errors in Cowan, et al.
 - Outcome
 - False positive cases
 - Less likely false negative controls
 - Exposure
 - Unit location errors likely
 - Model errors likely
 - Degree of these unknown

Misclassification Discussion: Smith, et al. and Lange, et al.

- Smith, et al., probably missed 90% of cases (many false negatives), but probably had very high PPV
- Lange, et al, probably over-diagnosed substantially (many false positive), had low PPV, but had few false negatives

5

Misclassification Discussion

 In each study diagnoses and exposure estimates were were made independently of each other; therefore it is probable that the errors are largely non-differential The effect of non-differential misclassification

- The effect of non-differential misclassification is known:
 - `...bias from independent non-differential misclassification of a dichotomous exposure is always in the direction of the null value..."
 Rothman and Greenland, Modern Epidemiology

54

More comments on non-differential misclassification

- "...the attenuation (of the odds ratio) can be appreciable even with a high sensitivity and specificity." Armstrong, et al. *Principles of Exposure Measurement in Epidemiology*
- "Random misclassification always results in an underestimation of the true relative risk..."
 Hennekins and Buring, Epidemiology in Medicine

The Potential for Selection Bias

- Difficult to assess, always a challenge, can give biased answer
- In both Lange, et al., and Cowan, et al., there was a low level of correlation between self-reported and modeled exposure, so self-selection is not likely to account for findings
- Must remain vigilant for bias

Conclusions

- When the observed odds ratios from the Cowan, et al., study are considered in the light of the substantial opportunity for misclassification, the findings are suggestive of an association between objective estimates of exposure to oil well fire smoke and risk of asthma diagnosis among CCEP participants
- Smith, et al., and Lange, et al., are likely to have even higher levels of misclassification, and that may account for the findings of no association
- More studies needed...